SCH4U

Organic Chemistry

hydrocarbon derivatives

MITCHELL KEMBER

(Family Name)

NAMING

(General Formula) **Note:** penta can be replaced by meth/eth/prop/but/...

stands for a number from the chain (IUPAC name) FXAMPLE (structural diagram)

(IUPAC name)

(structural diagram)

(Something about polarity) PHYSICAL

Note: Polar \rightarrow higher boiling point & more soluble in water CHEMICAL Reaction Type: (preparation reaction) Reaction Type: (reaction)

Organic Halides

N—X

NAMING Just like alkyl groups (**F** fluoro, **CI** chloro, **Br** bromo, **I** idodo).

1,2-difluorocyclohexane

$$\bigcap_{\mathsf{F}}^{\mathsf{F}}$$

PHYSICAL More polar than HCs due to halogen electronegativity.

CHEMICAL Halogenation: alkene/alkyne + halogen \rightarrow alkyl halide Elimination: alkyl halide + OH $^ \rightarrow$ alkene + H $_2$ O + halide ion Amine synthesis: alkyl halide + NH $_3$ \rightarrow amine + halide

NAMING	#-penta nol or #,#-penta <u>ne</u> diol,		# is location of OH	
	(polya	alcohol)	(hydroxyl group)	
EXAMPLE	ethanol CH3CH2OH	1-propanol	CH ₃ CH ₂ CH ₂ OH	

1° -CH₂-OH **2°** -CH-OH **3°** -C-OH DEGREE PHYSICAL

Much more polar than HCs and forms hydrogen bonds due to hydroxyl group. Dissolves polar & nonpolar compounds. Elimination: alcohol \rightarrow alkene + H₂O

CHEMICAL Oxidation: alcohol + (O)* \rightarrow aldehyde/ketone + H₂O Condensation: alcohol + alcohol → ether + H₂O

Ethers

EXAMPLE

R-O-R'

NAMING ethoxypentane or methyl ethyl ether or dipentyl ether (smallest first) (non-systematic) (R and R' are same)

methoxymethane (dimethyl ether) CH₃—O—CH₃

bonding. Mixes readily with polar & nonpolar substances.

methoxyethane (methyl ethyl ether) CH₃—O—CH₂CH₃

PHYSICAL More polar than HCs but less than alcohols. No hydrogen

CHEMICAL Condensation: see alcohols

Aldehydes

NAMING

FXAMPLE

penta**nal** (prefix includes R and C)

methanal butanal O O |

PHYSICAL More polar than HCs due to carbonyl =C=O, but less polar than alcohols. No hydrogen bonding.

Oxidation: see primary (1°) alcohols
Oxidation: aldehyde + (O)* → carboxylic acid
Hydrogenation: aldehyde + hydrogen → 1° alcohol

Ketones

NAMING

EXAMPLE

#-penta**none** (prefix includes R, C, and R')

propanone 3-pentanone

O

|
|
|
CH₃-C-CH₃

CH₃CH₂-C-CH₂CH₃

PHYSICAL Same as aldehydes.

CHEMICAL Oxidation: see secondary (2°) alcohols Hydrogenation: ketone + hydrogen \rightarrow 2° alcohol

$Carboxylic\ Acids \qquad R-$		R-	-C-	-OH
NAMING	penta noic acid (prefix includes R and C) or pentanedioic acid (carboxyl at both end	ls)	0	

ethanoic acid (acetic acid)

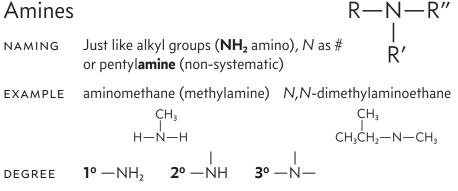
	` ,
Q	Q
 H—C—OH	∥ CH₃—C—OH
п—С—Оп	Сп₃—С—Оп

methanoic acid

FXAMPLE

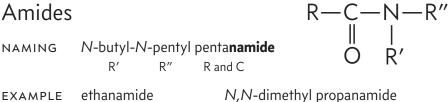
PHYSICAL Polarity and hydrogen bonding similar to alcohols due to the carboxyl group —COOH (carbonyl + hydroxyl).

CHEMICAL Oxidation: see aldehydes


Condensation: carboxylic acid + alcohol → ester + H₂O

Condensation: carboxylic acid + amine \rightarrow amide + H₂O

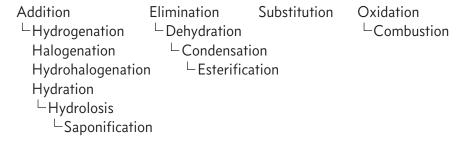
Esters R-C-O-R'pentyl penta**noate** NAMING R and C. methyl methanoate 1-methylpropyl ethanoate FXAMPLE $\begin{array}{ccc} O & CH_3 \\ \parallel & \mid \\ CH_3-C-O-CH_2CH_2CH_3 \end{array}$


PHYSICAL Less polar than carboxylic acids. No hydrogen bonding.

CHEMICAL Condensation: see carboxylic acids Hydrolosis: ester $+ H_2O \rightarrow carboxylic$ acid + alcohol

PHYSICAL More polar than HCs due to N—C and N—H bonds, but less polar than alcohols. Often has an unpleasant odour.

CHEMICAL Condensation: 1° amine + alkyl halide $\rightarrow 2^{\circ}$ amine + halide



O O CH₃ || I | CH₃-C-NH₂ CH₃CH₂-C-N-CH₃

PHYSICAL Weak bases, generally insoluble in water. Amides with two N—H bonds are more polar.

CHEMICAL Condensation: see carboxylic acids Hydrolosis: amide $+ H_2O \rightarrow carboxylic$ acid + amine

Reaction Classification

See the flowchart on page 83 of the textbook.

GOOD LUCK on the test on **Tuesday**, 10 December 2013.