Equations of lines
There are many ways of representing a mathematical line. You are probably most familiar with point-y-intercept form,
That equation is useful when you know the slope and the y-intercept. Also, that form is easy to express in function notation, like and it fits nicely with the other families of functions. Another way of describing a line is with standard form:
This form gives you both the intercepts, but most of the time it is inconvenient. Yet another type of line equation is point-slope form:
Not surprisingly, this is useful when you know a point and the slope.
Those three equations have something in common: they relate x to y. If you solve for y (already done for you in point-y-intercept form), you can choose an x-value and the equation will tell you the y-value. This isn’t the only way of doing it, as we will see. In particular, it doesn’t scale well to three-space; our new method will.
We are going to explore another triplet of line equations, starting with the vector equation of the line. To describe a line with vectors, we need an initial point that falls on the line—we’ll call it point A. From point A, we need a vector that tells us which way the line goes—we’ll call this Here’s what this might look like:
To get from point A to some point P elsewhere on the line, all we have to do is add a scalar multiple of the direction vector:
The value of t controls how far along the line we go from A. If it is negative, we go in the opposite direction. Instead of using origin-to-point notation, we usually use which is implied to be a position vector (the r stands for radius, and a position vector is a radius from the origin). Here is the conventional way of writing the vector equation of the line:
Suppose we substitute for vectors in with variables as components:
Breaking this up into two equations gives us the parametric equations of a line (two equations because there are two components):
and
There is an important difference between this form and the earlier ones. The other equations relate x and y such that we can choose one an obtain the other. With the parametric equations, we choose a value for the free parameter t. We plug this into the equations and they tell us x and y. Instead of x being related to y, they are both independently controlled by t.
If we solve the parametric equations for t, we get the symmetric form:
This form makes it easy to test if a particular point falls on the line: just evaluate both sides and see if they produce the same t-value.